
Commentary Mars, III

- 1. (26) The student can count up from 19 to 45, or subtract 19 from 45 to get 26.
- 2. (7:00) A clock for hands-on exploration would assist the student in adding 30 minutes to find 6:45, then adding 10 minutes to find 6:55, and adding 5 minutes to reach 7:00 AM.
- 3. (21) The student can add 3 groups of 7 or use the multiplication fact, $3 \times 7 = 21$.
- 4. (No) The student could start at \$1.25 and count the change left if buying only the crayons. If 75ϕ is left, then the paste for 79ϕ would make the cost over \$2.00. Most students will simply add \$1.25 and \$0.79 and realize that \$2.04 is more than Drew has.
- 5. (21) The pattern involves adding one more at each step than the step before. Start with 1 on Monday, then add 2 to get Tuesday's total, then 3 for Wednesday's total, then add 4 for Thursday and 5 for Friday, and finally 6 for Saturday. The total is 21.
- 6. (10) This problem resembles the handshake problem. It can be solved by assigning the 5 teams a letter or number and drawing a picture that shows team A plays B, C, D & E; Team B plays C, D, and E (they've already played A). Team C plays D & E as they have already played A and B. Team D plays E. Then the games are added: 4 + 3 + 2 + 1 = 10. Repeated work with this type of problem shows a pattern in the solutions.

- 7. (5 coins; 1 quarter, 1 dime, 1 nickel, and 2 pennies) Some students may choose 4 dimes and 2 pennies (6 coins) to make 42¢. Extra work with using quarters in change will increase their skill with the least amount of coins in making change.
- 8. (The answers are shown below.) Using the concepts of counting up, counting back, or addition and subtraction sense, the missing numbers can be found. Problems B & C involve regrouping ones and tens.